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Abstract

A large literature finds evidence that pricing kernels estimated nonparametrically

from option prices and historical returns are not monotonically decreasing in market

index returns. We propose a new nonparametric estimator of the pricing kernel that

reflects the information available to investors who set option prices. In simulations,

the estimator outperforms current techniques. Our empirical estimates using S&P 500

index option data from 1996-2012 and FTSE 100 index option data from 2002-2013

suggest that the “pricing kernel puzzle” is a byproduct of econometric technique rather

than a behavioral or economic phenomenon.
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1 Introduction

It is well known that the absence of arbitrage implies the existence of a positive pricing kernel,

or stochastic discount factor (SDF), that prices all assets. Almost all models of the tradeoff

between risk and return specify a pricing kernel that decreases monotonically with the quality

of the state of the world. The state of the world is often modeled as a function of the change in

aggregate wealth, which is measured by the return on a broad stock market index. A number

of researchers combine index option data with historical returns to estimate the pricing kernel

nonparametrically, but the kernels they estimate are generally not monotonic functions of

the market return. We argue that many of the methods used to estimate the pricing kernel

compare a forward-looking, conditional risk-neutral density estimated with option prices

to a backward-looking, essentially unconditional physical density estimated with historical

returns. We propose a new, completely nonparametric pricing kernel estimator that explicitly

accounts for the fact that option prices should reflect all information available. The new

estimator suggests that the pricing kernel is a monotonic function of stock market return

realizations.

Since the pricing kernel summarizes the attitudes of economic agents about risk, under-

standing its behavior is one of the primary goals of asset pricing. The research on SDF esti-

mation from option data starts with Jackwerth (2000) and Ait-Sahalia and Lo (2000), which

exploit the relation between option prices and the risk-neutral density. The risk-neutral

density is proportional to the SDF multiplied by the (physical) density of the underlying

asset. Breeden and Litzenberger (1978) show that the second derivative of the price of a call

option with respect to the strike price is proportional to the risk-neutral density. Both Jack-

werth (2000) and Ait-Sahalia and Lo (2000) cleverly use this fact to estimate the risk-neutral

density with market index option prices for different strike prices and then they divide the

resulting risk-neutral density by a nonparametric estimate of the physical density based on

historical return data. The resulting ratio of densities is what we refer to as the “classic”

nonparametric SDF estimator. Existing research has found that it is typically a decreasing

function of the market return over much of its range, but it is also often increasing over part
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of its range. Many other researchers apply similar techniques, though sometimes with im-

portant improvements, and also find that the SDF appears to be a nonmonotonic function.

More recent papers in this literature include Rosenberg and Engle (2002), Chaudhuri and

Schroder (2009), Beare and Schmidt (2011), and Bakshi and Chabi-Yo (2013). In related

research, Bakshi, Madan, and Panayotov (2010) find that average index option returns in

several countries are consistent with a U-shaped pricing kernel, but the noise in average re-

turns makes it difficult for them to draw strong conclusions. One paper that does not appear

to find an upward sloping kernel is Barone-Adesi, Engle, and Mancini (2008). Using data

from January 2002 to December 2004 and adjusting the variance of the physical distribution

using a GARCH model, they find a pricing kernel that appears to be decreasing.

If the pricing kernel is truly increasing in some range of aggregate wealth, then the

marginal value of a dollar is higher when markets rise than when they fall over that range.

For financial economists, this is extremely counterintuitive. Even with a multidimensional

state vector, it is difficult to see how a higher realized value of the market portfolio could

be systematically worse than a lower one. A non-monotonic pricing kernel is so surprising

that it has been coined the “implied risk aversion puzzle” or the “pricing kernel puzzle” in

the literature that has developed to explain it. Ziegler (2007) attributes it to differences in

beliefs among agents about the mean and variance of expected returns. Chabi-Yo, Garcia,

and Renault (2008) identify state dependence as a probable cause and propose a parametric

option pricing model that can generate upward slopes. Christoffersen, Heston, and Jacobs

(2009) propose a two-factor model, and Polkovnichenko and Zhao (2013) postulate a model

with rank-dependent utility to explain the puzzle.

One criticism of almost all of the empirical papers that find nonmonotonicity is that they

compare a conditional risk-neutral density to an essentially unconditional physical density.

Since option prices, like all market-determined prices, are discounted expectations of future

cash flows conditional on all information available, the risk-neutral density estimated from

option prices is a conditional density. In our data, most of the moments of the estimated

risk-neutral densities change substantially from one month to the next. Since there is no
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widely accepted method to nonparametrically estimate physical densities conditional on all

available information, common practice is to rely on the use of a rolling window of historical

data to make the physical density conditional. Of course, this is not really comparable to

using forward-looking option prices to back out market expectations. In fact, given that

from one period to the next, the nonparametric estimate of the physical density may only

change because of the inclusion of one new observation and the exclusion of one old one,

the estimated physical density can often be considered almost unconditional. At times

when the conditional risk-neutral density has a higher variance, skewness, kurtosis or other

moment than the estimated physical density, the ratio of the two densities can easily display

nonmonotonicity.

To demonstrate the problem caused by failing to account for conditional information in

the denominator of the SDF, we give two examples of how nonmonotonicity can arise in an

estimated pricing kernel implied by a misspecified Black-Scholes model. The first example

shows that in a simple single period setting we can get nonmonotonic ratios of risk-neutral

densities to physical densities if we allow the variances of the two to differ as they may when

we compare conditional and unconditional densities. In the second example we simulate

data from the misspecified Black-Scholes model in order to show that using a rolling window

to estimate the physical density while using strictly conditional estimates of the risk-neutral

density can lead to nonmonotonic and inaccurate estimators.

We propose a new method that avoids comparing conditional risk-neutral densities to

historical data by exploiting the insight that, at any given time, the conditional density

of the future market return is only the density for that particular return realization. We

can think of the observations we have as a series of risk-neutral densities accompanied by

a corresponding series of return realizations, with each period’s risk-neutral density being

different and with only one realization available for each density. Given these data, we can

integrate each of the risk-neutral densities up to their corresponding realizations to obtain

a set of realized CDF values. If the risk-neutral density is the same as the physical density,

the resulting CDF values will be uniformly distributed. To the extent that the empirical
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distribution of the CDF values is not uniform, we can use the distribution of the CDF values

to identify the pricing kernel. This is the intuition behind our pricing kernel estimator.

In simulations we find that our method substantially outperforms the classic method in

recovering the SDF that generated the data.

To estimate the SDF, we use monthly S&P 500 and FTSE 100 index option data to

nonparametrically estimate risk-neutral densities in the standard fashion, following Figlewski

(2008) with slight improvements. We then assume a stable but flexible SDF function, which

we model with a spline estimator. Finally, we estimate the spline parameters, identifying the

model with the fact that integrating the inverse of the SDF times the risk-neutral density

up to each realized value should produce a set of cumulants that are uniformly distributed.

In using this fact to identify our model, we follow Bliss and Panigirtzoglou (2005), who

use the same fact to estimate implied risk aversion coefficients parametrically. We use a

bootstrapping procedure to estimate confidence bounds for our nonparametric SDF. We

refer to our method as a Conditional Density Integration (CDI) method.

We estimate risk-neutral densities from option prices and physical densities from historical

returns, and find that these two sets of densities have surprisingly different characteristics.

Furthermore, when we (incorrectly) follow the classic procedure by dividing our risk-neutral

densities by our physical densities, we also find implied pricing kernels that are nonmonotonic.

These nonmonotonic pricing kernels are very sensitive to how the physical densities are

estimated, which suggests they are not econometrically robust. However, when we properly

account for the conditional nature of the risk-neutral densities estimated from option prices

by using the CDI estimator, the resulting pricing kernel estimate is monotonically decreasing.

In the next section of the paper, we discuss both the classic estimation method and our

new CDI method in detail. We also motivate our estimation method theoretically and show

that the misspecified Black-Scholes model produces a nonmonotonic SDF. In Section 3 we

report the results of simulations designed to compare the performance of the CDI method

to that of the classic method. Section 4 describes the data that we use for our tests, and

Section 5 reports our primary results. Section 6 concludes.
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2 Estimating the SDF

The new CDI method we use to derive an estimate of the stochastic discount factor that

properly accounts for conditional information is perhaps the biggest contribution of our pa-

per, so we describe it in detail in this section. Our CDI method allows an econometrician to

better account for the information set available to investors at the time investment decisions

are made. We carefully explain how this is achieved. We also discuss the classic nonpara-

metric approach to estimating the SDF, point out its shortcomings and discuss how these

can lead to economically implausible pricing kernels. In Section 5, we apply the estimation

procedures described here and show that the proposed econometric method has the potential

to solve the risk aversion puzzle.

2.1 Classic Method

The classic nonparametric method of estimating the SDF of Jackwerth (2000) and Ait-

Sahalia and Lo (2000) relies heavily on a well known result from probability theory known

as the Radon-Nikodym Theorem. The theorem holds for general probability measures P

and Q. However, for the purposes of this paper we will apply the theorem to measures

induced by the risk-neutral and physical cumulative distribution functions, FQ and FP . For

completeness, we state the theorem here.

Theorem 2.1. (Radon-Nikodym Theorem)1 Let P and Q be probability measures such that

P is absolutely continuous with respect to Q. Then there exists an almost surely unique (with

respect to measure Q) random variable, commonly denoted dP

dQ
called the Radon-Nikodym

derivative of P with respect to Q, such that for all sets G that are measurable with respect to

Q ,

P(G) =

∫

G

dP

dQ
dQ.

Notice that the Radon-Nikodym Theorem defines a random variable dP

dQ
that changes

measure from Q to the P-measure. Accordingly, the Radon-Nikodym derivative is often

1See Billingsley (2012), for example.
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referred to as a change of measure. Furthermore, the Radon-Nikodym derivative plays a

large role in financial economics as it is very closely related to the stochastic discount factor.

In the absence of arbitrage, if we let xt denote the time t payoff of an asset and Pt denote

time t price of the asset, then by the Fundamental Theorem of Asset Pricing we have

Pt = EP[mt,t+sxt+s|Ft],

where mt,t+s is the stochastic discount factor and Ft represents the time t information set.

The corresponding risk-neutral pricing equation,

Pt = e−rsEQ[xt+s|Ft]

suggests that the SDF can be expressed as

mt,t+s = e−rs dFQ

dFP
. (1)

Corollary 2.2. If probability measures P and Q are equivalent measures, then the Radon-

Nikodym derivative of P with respect to Q is equal to the inverse of the Radon-Nikodym

derivative of Q with respect to P,

dQ

dP
=

(
dP

dQ

)
−1

. (2)

Furthermore, if both Q and P are equivalent to dx, then

dQ

dP
=

dQ

dx

/
dP

dx
(3)

Corollary 2.2 requires that the measures P and Q be equivalent. This simply means that

they assign probability zero to the same set of events. In the case of physical and risk-

neutral distributions of an event, this requirement is generally met because the distributions

are simply re-weighted versions of one another where the weights correspond to the market’s

risk preferences. Intuitively, the price of an Arrow-Debreu security paying a positive payoff

with positive physical probability will always have a positive price. For this reason, Corollary

2.2 will apply in our setting where we use the fact that cumulative distribution functions

induce probability measures and we let FP represent the physical CDF of returns on the S&P
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500 or FTSE 100 and FQ represents the corresponding risk-neutral distribution function.

The Radon-Nikodym theorem applies to the probability measures induced by each of the

cumulative distribution functions. The requirement that each of the measures be equivalent

to the Lesbesgue measure is satisfied for all distributions with continuous, non-zero densities

like those generally used in economics and finance. Notice that Equation (3) allows one

to express the Radon-Nikodym derivative as a fraction of two derivatives. The generally

accepted notation for the Radon-Nikodym derivative, dQ

dP
, does not actually represent a

fraction. It is just a random variable that changes measure from Q to P.

Equation (3) from Corollary 2.2 is implicitly invoked in the method we refer to as the

classic nonparametric method of SDF estimation. The classic approach relies on the fact that

the SDF is proportional to the Radon-Nikodym derivative of the risk-neutral distribution

with respect the physical distribution. Furthermore, the method relies on the fact that for

sufficiently well behaved distributions (see Corollary 2.2 ), the Radon-Nikodym derivative in

question is simply the ratio of the risk-neutral density, dFQ

dx
to the physical density, dFP

dx
. This

fact allows econometricians to estimate the SDF by estimating the risk-neutral and physical

densities separately and then taking the ratio of the densities.

Since the classic nonparametric method relies on estimation of the Radon-Nikodym

derivative via Equation (3), it reduces to estimating the two densities separately. Theo-

retically, the densities in the numerator and denominator of the Radon-Nikodym derivative

in Equation (3) are conditional densities; they take into account investors’ beliefs at the time

of investment, conditional on all information available, Ft. As such, we ideally should take

care to estimate the densities in a conditional, forward-looking manner. For estimation of

the numerator, one typically relies on the result of Breeden and Litzenberger (1978), that

dFQ

dK
= erT ∂2C

∂K2 , where C represents the option price, K represents strike prices and dFQ

dK
repre-

sents the risk-neutral density over possible realizations of the underlying. Since options data

typically allow us to observe option prices with a number of strike prices K, we are able to

estimate the derivative dFQ

dK
over a collection of points K. Various techniques for estimating

or interpolating values of the density between observed strike prices have been proposed in
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the literature. This gives an estimate of the risk-neutral density which is forward-looking

and hence conditional in nature.

On the other hand, there are no known methods for estimating dFP
t , the time t physical

density, in a forward-looking manner, taking into account the information investors base their

investment decisions on at time t. In previous studies, dFP
t has been estimated by smoothing

or averaging past realized returns. In order to make the estimates reflect a conditional

rather than unconditional density, a rolling window is typically used to estimate the physical

density. This approach clearly leaves much to be desired. Nonparametric estimates require

large amounts of data, thus forcing recent data, even if it accurately reflects beliefs about

the future, to be a small part of the estimated density.

In effect, the classic method of nonparametrically estimating the SDF implicitly assumes

that physical probability measures and their corresponding densities are stable over time, or

that the conditional densities are the same as unconditional densities. The assumption of

stable physical densities and distributions is widely believed to be implausible. The method

of Breeden and Litzenberger (1978) for estimating conditional, risk-neutral densities reveals

that their time series is not stable. We characterize the risk-neutral densities implied by our

option price data in Table 1, which is discussed in Section 5. If the risk-neutral densities are

not stable over time, it is implausible that physical densities are.

To investigate whether comparing a conditional density to an unconditional density can

cause non-monotonicity in practice, we calculate implied pricing kernels under Black-Scholes

assumptions, but with a slightly higher risk-neutral than physical variance. Our example is

motivated by the fact that the risk-neutral density can change significantly from period to

period while the estimated physical density will typically be more stable. In some periods,

the risk-neutral density may have a higher variance than the physical, while in other periods

it may have a lower variance. In Panel A of Figure 1, we plot the physical and risk-neutral

densities under the assumption that returns are lognormally distributed and have parameter

values that correspond to our risk-neutral sample moments. Panel B plots the corresponding

pricing kernel function, which is monotonically decreasing in market returns. In Panels C
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and D, we plot the densities and pricing kernel under the assumption that the variance

of the risk-neutral density is slightly higher than that of the physical density, changing the

(monthly) σ parameter from 5.26% to 5.50% percent. The pricing kernel in Panel D starts at

a very high level and is first decreasing and then increasing, reflecting a pattern often found

in prior work. This example only allows the second moment to differ across these densities.

In typical pricing kernel estimation, all the moments of the estimated risk-neutral density

can, in principle, vary from period to period while the estimated physical density, based

on historical data, is relatively stable. This shows that if the estimated physical density

does not change to reflect new information as much as the risk-neutral density does, the

corresponding estimated pricing kernel can be increasing over some range. This problem

is inherently present in all of the nonparametric pricing kernel estimators based on option

prices that we are familiar with.

In the remainder of this section, we discuss our conditional density integration method in

detail. We begin with an in depth description of how we estimate the risk-neutral densities

of the market’s beliefs about one month returns on both the S&P 500 and FTSE 100 indices.

Our estimation technique draws from many existing methods, but it most closely follows

Figlewski (2008). Next, we discuss how we use these densities to estimate the SDF using the

CDI method as well as the classic method. It is important to note that, in both cases, we use

the same risk-neutral densities. This way, when we discuss our empirical results in Section 5,

we are able to ensure that the differences in the results come from differences in accounting

for conditioning information as opposed to differences in the risk-neutral densities used in

the estimation.

2.2 Estimating Risk-Neutral Densities

In order to estimate the stochastic discount factor over the horizon spanned by the Option-

Metrics data, we first estimate monthly risk-neutral densities following the method outlined

in Figlewski (2008), with a few modifications that we describe below. Each month, for the

options data with best bids (or last prices when bids are not available) exceeding $3/8, we
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fit a fourth degree spline to implied volatilities associated with each observed strike price.

This is done by placing a single knot at the close price on the day the option is traded,

with the remainder of the required knots placed at the minimum and maximum strike prices

within our sample. This creates a continuous curve in the implied volatility space. We then

convert the implied volatility curve back to the price space by inverting the transformation

used to obtain implied volatilities. With the given prices we apply the result of Breeden and

Litzenberger (1978), that dFQ

dK
= erT ∂2C

∂K2 , where FQ represents the risk-neutral CDF and dFQ

dK

represents the density over prices, K. Because we smooth implied volatilities our estimation

procedure always results in reasonable density functions with positive values.

The practice of removing options data with very small prices is standard in the options

literature as options with extremely low prices tend to provide misleading data because they

are so far out of the money. While extremely small prices can often give rise to misleading

data, leaving them out of our data poses a problem as well. By leaving out these data, our

estimated densities are often left truncated in the tails, especially in the upper tail because

far out-of-the-money call options are relatively thinly traded. The densities obtained by

taking second derivatives over strike prices will often look like that in Figure 2. We refer to

this part of the density as the truncated density. It is clear from the figure that truncating

the data in our sample can potentially cause us to miss out on a large portion of the density.

We circumvent this problem by applying the method of Figlewski (2008) to estimate the

tails of the risk-neutral distributions in our sample.

The tail estimation method relies on results from Pickands III (1975) and Balkema and

De Haan (1974) both of which show that for an independent, identically distributed se-

quence of random variables, the conditional distribution given that the variable exceeds

some threshold approaches a generalized Pareto distribution as the specified threshold be-

comes large. Following the logic of this result, we find the parameters from a generalized

Pareto distribution that give the closest match to the truncated risk-neutral density. By

pasting the resulting generalized Pareto distribution onto the truncated risk-neutral density,

we complete the estimation of the entire density.2

2Our method differs slightly from that of Figlewski (2008), which uses a generalized extreme value distri-

10



The generalized Pareto distribution is characterized by three parameters: a location

parameter, a scale parameter and a shape parameter. In order to fit the tail distribution, we

choose three points on each side of the truncated distribution. With these three points, we

then find the three parameter values of the generalized Pareto distribution that lies closest

to the truncated distribution at the three points. By choosing three points, we are able

to identify the three parameter values. We do this for each tail of the distribution. While

Figlewski (2008) only uses two points for each tail and imposes the additional constraint

that the area under the curve must equal one, we find that the optimization gives smoother

transitions between the truncated density and the tails if we do not include the constraint

on the area. Instead, we match three points in each tail and then normalize our estimate to

ensure that the area of the density is equal to one. In most cases, this normalization does not

change the curve estimation much at all as the tail matching itself gives densities whose area

is nearly equal to one. In the few cases where the normalization has much impact, imposing

a constraint on the area in the tail-matching optimization results in awkward kinks in the

density which are clearly just an artifact of the optimization and its constraints.

In a small number of cases, the truncated part of the distribution does not go far enough

into the tail of the distribution to allow the tail matching procedure to fit well. This happens

when the upper end of the central distribution, which is determined by our data, does not

extend far enough past the peak of the distribution. In these cases, we interpolate the implied

volatility curve to larger return values using cubic spline interpolation. The resulting implied

volatility curve is then transformed back to the option price space so that we can take the

bution rather than a generalized Pareto distribution to estimate the tails of the risk-neutral density. The use

of generalized extreme value distribution comes from similar theory of statistics of extremes. The Fisher-

Tippett theorem (see for example Embrechts, Klüppelberg, and Mikosch (1997)) states that the sample

maximum of an independent, identically distributed sequence of random variables approaches a generalized

extreme value distribution as the sample size approaches infinity. However, since we are looking at matching

the tail of the distribution beyond some extreme point determined by our data, we feel that an application

of the results in Pickands III (1975) and Balkema and De Haan (1974) is most appropriate. So we use a gen-

eralized Pareto distribution as opposed to a generalized extreme value distribution when estimating the tails

of the risk-neutral densities. In more recent work Figlewski also adopts the generalized Pareto distribution.
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second derivative to obtain the truncated part of the risk-neutral distribution. This extends

the truncated part of the distribution just far enough that the tail matching procedure gives

a meaningful upper tail.

We use risk-neutral densities estimated with this method to calculate the SDF using both

the classic nonparametric method and our new CDI method. Using the same set of risk-

neutral densities, the classic nonparametric method yields nonmonotonic SDF estimates but

the CDI method produces monotonic estimates. Thus, our method of estimating risk-neutral

densities does not seem to drive the monotonicity result that we find.

2.3 Standard Approach to Estimating Physical Densities

Once we have the forward-looking, risk-neutral densities, we can proceed with estimating

the stochastic discount factor. For the classic method, which relies on Equation (3), we are

left to estimate the physical densities corresponding to each of the risk-neutral densities. As

described above, until now there has been no known way to estimate the physical density

in a forward-looking manner, and the solution proposed in the literature is to use a rolling

window of data to nonparametrically estimate the physical densities. We use a Gaussian

kernel density estimator with a rolling window. To obtain a conditional estimate, it is

best to use as short a window as possible without compromising the integrity of the kernel

estimator.

As discussed earlier, in theory, the physical and risk-neutral densities should have the

same support. Empirically, using a rolling window of data to estimate the kernel density often

results in estimates of the physical density with different (machine measurable) support from

the risk-neutral density for the same period. This is itself a sign that there is a problem with

the estimation procedure. This is a result of improperly matching conditional information in

the numerator and denominator of the Radon-Nikodym derivative. If, for instance, previous

returns within the rolling window tend to be low but recently the market received news

suggesting high returns in the future, then the upper tail of the forward looking risk-neutral

density may have support beyond the range of positive support for the physical density
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estimate. Similarly, we observe instances where the physical density has wider support than

the risk-neutral density. In practice, when this happens, we need to truncate the densities

such that they have the same region of positive support, to avoid dividing a positive density

by zero for some returns. To avoid this problem, for each date, we estimate the pricing kernel

over the range between the maximum of the lower bounds of support for the densities and

the minimum of the upper bound.

2.4 CDI Approach

In order to estimate the SDF with option prices observed over a period of time, we need to

make a stationarity assumption for the SDF. We assume the following:

Assumption 1. The stochastic discount factor over our sample period is stationary up to a

rate of time discount factor e−rtτ , where rt is the risk free rate at time t and τ is the duration

of the payoff period over which the SDF is discounting.

While this is a very common assumption in empirical asset pricing, it probably merits

a little extra discussion in this context. It is equivalent to the assumption that the ratio

of risk-neutral to physical densities is stable over time. This is a fairly plausible assump-

tion if one believes that the representative investor’s preferences are relatively stable over

time, since investor preferences are responsible for the difference between the risk-neutral

and physical densities. This assumption is consistent with the empirical finding that risk-

neutral and physical densities change over time, but it requires that the two vary together.

Mathematically, the assumption reduces to stability of
dF

Q
t

dFP
t

, as opposed to stability of dFP
t .

Our assumption is also the key identifying assumption made in Bliss and Panigirtzoglou

(2005), where it is argued that this is a more plausible assumption than the assumption that

is implicitly required for the classical estimator of the stochastic discount factor.

If we do not take our stationarity assumption to be literally true, our estimate of the

SDF can be interpreted as an average SDF over our sample period. Many of the researchers

who apply the classic nonparametric SDF estimation method report an average SDF, and

our estimate can easily be compared to theirs. While it would be nice to be able to identify
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variation in the pricing kernel over time, we argue that there simply is not enough information

in the data to do this consistently. To be able to estimate a pricing kernel month by month,

we would need a convincing way to estimate conditional physical densities. In the absence

of such a method, at least we know that we can estimate the average SDF correctly.

Our identification strategy relies on several well known properties from statistics and

probability theory. The first of these properties, which is central to our method, allows us

to circumvent the need for estimating the physical densities corresponding to each of the

risk-neutral densities. The property is given in the following proposition:

Proposition 1. For any continuous random variable, X with CDF Fx, the random variable

defined by Fx(X) is uniformly distributed on the interval [0, 1],

Fx(X) ∼ U [0, 1]. (4)

We let FP
t be the unobserved probability measure representing investors’ aggregate beliefs

about returns on the S&P 500 under the physical measure at time t and let returns over the

subsequent period be given by Xt. Now it follows from Proposition 1, that

∫ Xt

−∞

dFP
t (x) ∼ U [0, 1]. (5)

Since there are no known methods for estimating dFP
t in a forward-looking manner,

estimating Equation (5) directly from the data is not a simple task. It would presumably

require obtaining a long time series of past realizations of ex-dividend returns.3 One would

then have to find a way to use these returns to estimate forward looking beliefs about returns

under the physical measure. As discussed earlier, this method would require something

beyond simply smoothing a long time series of past returns, since that does not do a good

job of estimating the current beliefs held by the market. In order to circumvent this problem,

we make use of the fact that we do have forward looking estimates of market beliefs about

future returns under the risk-neutral measure.

3We use percentage changes in market value because option payoffs are based on the market value of the

S&P 500 at expiration. This amounts to shifting the cum-dividend return density to the left, but a stable

dividend yield does not affect the shape of the SDF.
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We express Equation (5) in terms of the risk-neutral densities estimated using our gen-

eralized Pareto distribution tail matching procedure. Let dF
Q
t be the time t risk-neutral

probability measure and let
dFP

t

dF
Q
t

denote the Radon-Nikodym derivative of time t physical

distribution with respect to time t risk-neutral distribution. Then

∫ Xt

−∞

dFP
t =

∫ Xt

−∞

dFP
t

dF
Q
t

dF
Q
t =

∫ Xt

−∞

(

dF
Q
t

dFP
t

)
−1

dF
Q
t ∼ U [0, 1], (6)

where the first equality in Equation (6) follows from Theorem 2.1 and the second equality

follows from Corollary 2.2.

Since we can estimate the risk-neutral densities and we observe realized returns over

the periods corresponding to each density, it only remains to estimate the random variable
(

dF
Q
t

dFP
t

)−1

, which is proportional to the inverse of the stochastic discount factor. Therefore,

by estimating
(

dF
Q
t

dFP
t

)−1

, we have essentially estimated the stochastic discount factor. It is

important, however, that we first establish uniqueness of the random variable we attempt to

estimate. The following proposition ensures that there is such a unique random variable.

Proposition 2. For any equivalent measures Q and P on R with random variable X ∼ P,

there exists a unique (a.s. Q) non-negative function g : R → R+ such that

∫ X

−∞

g(y)dQ(y) ∼ U [0, 1]. (7)

A proof of this proposition appears in the Appendix.

The function denoted g in Proposition 2 is similar to the Radon-Nikodym term in Equa-

tion (6), the main difference being that in Equation (7), the region of integration is itself

random. So the Radon-Nikodym Theorem is not directly applicable here. The functional

form of g defines a random variable in Proposition 2 because it is evaluated at possible

values of the random outcome. We can think of inputs to the function g as values the ran-

dom variable X can take. The outcomes of the random variable depend upon ω ∈ Ω the

probability space determining returns, X = X(ω). As such, the integral with respect to dQ

can be interpreted as the integral with respect to the measure Q ({ω : X(ω) ∈ dy}). In this

way, g(y) = φ ({ω : X(ω) ∈ dy}), where φ is a mapping from Ω to the non-negative real line,
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φ : Ω → R+. So g(y) represents possible realizations of the random variable g(X(ω)) = φ(ω).

We will let g denote the inverse of the SDF up to a rate of time discount ertτ , where rt is

the risk-free rate at time t and τ is the time to expiration of the option. Our estimation

procedure will focus on estimating g.

Proposition 2 establishes uniqueness of the function g that transforms the integral with

respect to measure Q, to a specific distribution. This is similar to the statement of the

Radon-Nikodym Theorem. The function g, mapping realizations of returns to non-negative

values is itself a random variable, much the same as the Radon-Nikodym derivative. The

difference is that here we have a random domain (−∞, X]. We thus estimate the functional

form of g that maps random outcome of percentage changes in the S&P 500 to the unique

kernel that transforms the integral in Equation (7) to the uniform distribution.

2.5 CDI Approach Estimation and Inference

Our goal is to estimate the SDF in a way that reflects investors’ beliefs as accurately as

possible. For this reason, we do not impose any parametric restriction on the form of the

stochastic discount factor. Instead, we use a cubic spline to obtain nonparametric estimates

of the inverse SDF. Since any real valued function can be reproduced by a cubic spline of

infinite order, this is a completely model-free estimation procedure. We use finite order cubic

B-splines to approximate the function g. We use cubic B-splines as opposed to polynomials

because they offer more flexibility in estimating functional forms. The use of splines of order

b requires that we first choose the placement of knots which will determine the bases to be

used for estimation purposes. We simply use equally spaced knots over our range of returns.

The minimum of the range is set to the minimum value for which our estimated risk-neutral

densities, over all months in the sample, have a positive (machine measurable) support.

The maximum of the range is the maximum realized return within our sample. This range

corresponds to the values over which the integral in Equation (7) is taken, once we replace

−∞ with the minimum value for which dFQ has positive support. The cubic B-spline of
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order b is a linear combination of b basis functions,

g(y) ≈
b∑

j=1

θjBj(y),

where Bj(·) denotes the jth basis function of the spline. Using this approximation to the

function g, we can also approximate the integral in Equation (6) as a linear combination of

integrals,

∫ X

−∞

g(y)dFQ(y) ≈
b∑

j=1

θj

∫ X

−∞

Bj(y)dFQ(y). (8)

Since we have a linear function in θ, our estimated function ĝ is given by

ĝ = Aθ̂, (9)

where θ = (θ1, ...., θb)
′ and θ̂ = (θ̂1, ...., θ̂b)

′. A is our data matrix which is expressed in terms

of risk-neutral distributions estimated from options data, realized S&P 500 index returns

corresponding to each risk-neutral distribution, denoted Xt and the spline basis functions.

We can formally represent the data matrix A ∈ RT×b by

Ai,j =

∫ Xi

−∞

Bj(y)dF
Q
i (y), i = 1, ..., T ; , j = 1, ..., b, (10)

where T represents the number of monthly estimates of FQ available and b is the number of

basis functions included in our estimated spline approximation of g.

Since we will be using non-overlapping data on monthly options from OptionMetrics

which only goes back as far as 1996 for the S&P 500 and 2002 for the FTSE, as described

in Section 4, our sample is not extremely large. For this reason, we use a GMM type opti-

mization with only the first stage optimization. This has been shown to perform best when

one does not have extremely large data sets with which to perform GMM estimation (see for

example Hayashi (2000)). In order to make the best use of the data available to us, we opti-

mally choose model parameters b and m in order to balance the trade off between the number

of moment restrictions and the number of parameters to be estimated. A larger number of

spline basis functions, b, corresponds to a more flexible and accurate spline approximation of
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the function g. However, increasing the number of basis functions requires that we increase

the number of moment restrictions in our estimation because identification of θ requires that

the number of moment restrictions be at least as large as the number of parameters to be

estimated, b ≤ m. Arbitrarily increasing the number of moment restrictions, on the other

hand, decreases our degrees of freedom in estimating θ, resulting in data limitations. Our

goal is to make the best possible use of the finite data sample available to us by letting the

data determine the optimal values of b and m.

To estimate θ, we solve the first stage GMM optimization,

θ̂ = argmin
θ∈Rb

m∑

j=1









T∑

t=1









b∑

j=1

θj

∫ Xt

−∞

Bj(y)dF
Q
t (y)

︸ ︷︷ ︸

ĝ(θ)









j

−
1

j + 1









2

, (11)

where we use the fact that the jth moment of the uniform distribution over the unit interval

is equal to 1
j+1

and we use the the first m moments in estimating the parameter vector θ.

Once we have the estimated θ̂, it is straight forward to estimate g. We simply need to

plug θ̂ into Equation (9) to obtain our estimate for g, the inverse of the Radon-Nikodym

derivative,
dF

Q
t

dFP
t

, for all t. By Corollary 2.2,
dF

Q
t

dFP
t

= 1
ĝ

for all t. So our estimated SDF is given

by e−rtτ 1
ĝ(X)

, where rt denotes the risk free rate at time t, τ represents time to maturity of

time t index options on the S&P 500 index and Xt denotes returns on the S&P 500 index.

This can be re-expressed as

mt,t+τ(X) = e−rtτM(X),

where M(x) ≡ 1
g(x)

.

Since we assume that the function g is time-invariant, it follows that M and M̂ = 1
g

are also time invariant. Since M̂ is time invariant, the SDF will be time invariant up to

the term e−rtτ . The value of e−rtτ is also very stable over our sample period. So the SDF

does not vary substantially over our sample under our set of assumptions. We focus only on

the estimation of M̂ because the time discount factor e−rtτ does not tell us anything about

investors’ preferences over states of the world and returns on market indices. In Section 5,
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we will discuss our empirical results based upon estimates of M(x), as described above.

For the purposes of inference, we calculate pointwise confidence intervals for the estimated

SDF. We resample with replacement from the set of rows of the data matrix in Equation

(10). This is equivalent to sampling with replacement from the set of dates associated with

each risk-neutral density we estimate. For each sample, we can re-calculate the SDF estimate

using the CDI method. We then calculate the accelerated bias-corrected (BCa) percentile

bootstrap confidence intervals as described in Efron and Tibshirani (1993). This gives us a

virtual continuum of pointwise confidence intervals if we take a fine partition of the return

space. However, as is the case with most nonparametric methods, in order to get a very

tight confidence interval, a large amount of data is needed.

2.6 Model Selection

In order to estimate θ, we use a GMM type estimation to match the resulting estimate to

the moments of the uniform distribution over the unit interval as in Equation (11). This

requires that we choose the number of moment restrictions m as well as b, the dimension of

θ. As we do throughout the paper, we wish to impose as little structure as possible on the

estimation. This allows us to estimate the SDF in a manner we feel best approximates the

market’s beliefs and risk preferences, which determine the SDF. In keeping with this goal,

we optimally choose the m and b according to our data.

Our model selection criterion for determining b and m uses the Cramer-von Mises statis-

tic4 which is a common nonparametric criterion for determining the goodness of fit of an

estimated distribution. The Cramer-von Mises statistic compares an estimated distribution

to a target distribution (uniform in our case) by comparing the corresponding CDFs, F̂ and

4We use the Cramer-von Mises statistics as our criterion because it minimizes the mean-squared distance

between CDFs as opposed to the Kolmogorov-Smirnov statistic, which minimizes the maximum distance

between two CDFs,

KS = sup
x∈R

|F̂(x) − FU (x)|.

This amounts to choosing the estimate which minimizes the difference over the entire range of values in a

mean-squared sense, as opposed to choosing the statistic which minimizes the size of the largest error.
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FU respectively. Here F̂ is the empirical distribution function. A small Cramer-von Mises

statistic implies a good fit while larger statistics imply poor fit. The statistic is given by

CvM =

∫
∞

x=−∞

(F̂(x) − FU (x))2dFU (x).

In the case of the uniform distribution over the unit interval, we can express this as

CvM =

∫ 1

x=0

(F̂(x) − x)2dx.

While we choose the model based solely on the value of the Cramer-von Mises statistic,

this doesn’t necessarily tell us how well our optimal model transforms the data to match the

uniform distribution. We also calculate the p-values corresponding to the null hypothesis

that the estimated distributions is the same as the hypothesized distribution. We calculate

p-values base upon simulated outcomes as opposed to asymptotic distributions. This gives

us a sense of exactly how well our model selection and subsequent optimization perform.

We refer to optimal selection of b and m as model selection, and we will use the optimal

model to estimate θ and hence ĝ as well as the SDF. In order to optimally select our model,

we examine goodness of fit of our estimated CDF with the uniform CDF. Our estimated

CDF is given by the empirical CDF corresponding to the estimated parameter vector θ̂ for

a given combination of b and m,

F̂b,m(x) =
1

T

T∑

t=1

(
b∑

j=1

θ̂j

∫ Xt

−∞

Bj(y)dF
Q
t (y) ≤ x

)

, (12)

where (E) represents the indicator function taking value 1 in the where event E is true and

the value zero otherwise.

We evaluate Equation (12) with the estimated parameter vectors and then compare the

Cramer-von Mises statistics for each, keeping in mind that in order for θ to be identified

requires that b ≤ m. That is, the number of moment restrictions must be at least as large

as the number of parameters to be estimated. The smallest Cramer-von Mises statistic

corresponds to the model for which the CDI procedure transforms the data to a distribution

closest to the uniform distribution. We refer to this as the optimal model.
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3 Simulation

This section examines the efficacy of the CDI method in sample sizes typical of those in

the empirical literature on pricing kernel estimation, and contrasts this with the efficacy of

the classical estimator in the same sample. We extend the example described in Section 2.1

from a static, single period setting to a multiperiod setting with data comparable to that

which we observe in the S&P 500 and FTSE 100 data. By simulating data with a known

SDF, we can observe how accurately each is able to estimate the true SDF. Our simulated

data assumes underlying index returns are distributed log-normally as is the case in the

Black-Scholes world. We choose parameters of the distribution to fit the data generated by

our risk-neutral S&P 500 densities.

We begin by defining an SDF that will be used to generate our data. As we have done

throughout the paper, we refer to the SDF as the Radon-Nikodym derivative of the risk-

neutral with respect to the physical measure and we ignore the rate of time discount factor.

To be consistent with our data and Assumption 1, we assume that the stationary SDF

in the economy is given by the SDF in Panel B of Figure 6. This is the SDF resulting

from taking the ratio of the (risk-neutral) log-normal density with location parameter µQ =

0.00011 and scale parameter σQ = 0.0526 and the (physical) log-normal density with location

parameter µP = 0.0040 and scale parameter σP = 0.0526. As described in Section 2.1, these

parameters are chosen to match the average of the monthly distributions corresponding to

those (annualized) values given in Panel A of Table 1. Notice that we have set σQ = σP

to be consistent with the Black-Scholes model. As in the Black-Scholes model, the location

parameters µq and µp differ.

While the Black-Scholes model allows for the physical and risk-neutral scale parameters

to differ, they are both assumed to be fixed over time. The S&P 500 risk-neutral densities

described in Table 1 are time varying and it is generally accepted that both σP and σQ are

time varying. For the purposes of our illustrative simulation, we let scale parameters σP and

σQ vary over time while we keep the location parameters µP and µQ fixed at their respective

values. As such, we fit our series of S&P 500 monthly variances described in Table 1 to an
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Ornstein-Uhlenbeck process. This is done by simply taking the variance of each risk-neutral

density estimated using the method described in Section 2.2, and maximizing the likelihood

function to estimate the parameters of the Ornstein-Uhlenbeck process being fit to the series

of variances. With the resulting estimated parameters of the process, we simulate a series of

N risk-neutral variances. Along with the fixed location parameter µQ and the assumption

of log-normality, this variance process gives us a series of N risk-neutral densities. Both the

CDI method and the classical method use these densities to recover the SDF estimates.

Once we have the risk-neutral densities we can use the true stochastic discount factor

to get the physical densities corresponding to each risk-neutral density. Recall that dFP
t =

(
dF

Q
t

dFP
t

)−1

dF
Q
t . We use this fact to get the physical densities corresponding to each risk-

neutral density. We then take a single random draw from each of the physical densities in

the series. This is done by first recovering the CDF, FP
t from each physical density dFP

t . Next

we generate a series of draws from a uniform distribution over the unit interval, ut ∼ U [0, 1],

for t ∈ {1, 2, ..., N}. Draws from the physical density dFP
t are given by (FP

t )−1(ut) which has

exactly the distribution of our physical density dFP
t . Each of these draws from the physical

distribution correspond to the realized monthly returns we observe in the data. Now we

have a series
(

dF
Q
t , Xt

)

for t ∈ {1, 2, ..., N}, where Xt represents the time t realization of a

draw from the time t physical density dFP
t . Since the physical density and the true SDF are

unobservable to the econometrician, this series of risk-neutral densities and single realizations

from physical densities replicates the data that is available to the econometrician.

With the series
(

dF
Q
t , Xt

)

, we estimate true SDF using both the CDI method and the

classical method. We show results of both estimation procedures for N = 200, 500, and 1, 000.

By comparing these estimates we can see how well each of the methods performs with small

data samples. In particular, comparing the two methods allows us to see how estimates can

be affected when comparing forward-looking estimates with backward-looking estimates. We

use a 60 period rolling window of realized returns Xt to compute kernel density estimates

of the physical densities which are unknown to the econometrician. The results of the sim-

ulations for both estimators are shown in Figure 3. Panel A shows that for all values of
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N , the CDI estimator does a very good job of recovering the true SDF. While the smallest

data sample recovers the true SDF fairly well over the range [.95, 1.05], outside of the range

[0.95, 1.05], the CDI estimator veers away from the true SDF when N = 200. This is hardly

surprising given that there are relatively few realized observations outside this range. For

N = 500 and N = 1, 000, the CDI estimator does a very good job of recovering the true

SDF over the entire range depicted, [0.9, 1.1]. This is made possible by the fact that larger

samples have a larger number of observations near both 0.9 and 1.1, allowing the spline to

accurately estimate the SDF near those values of returns.

Panel B shows the results of the simulation performed for the classical method. It is

clear from the figure that none of the estimates are able to recover the true SDF with any

accuracy. The estimates resulting from N = 200 and N = 1, 000 simulated months exhibit

extreme non-monotonicity and do not come close to recovering the true SDF. The estimate

when N = 500 does far better than the other two estimates using the classical method.

However, if we compare the classical method with N = 500 to the poorest performing CDI

estimator, that with N = 200, it is clear that the the poorest performing CDI estimate

significantly outperforms the best estimate using the classical method. Figure 3 shows that

the CDI method performs very well while the classical method performs poorly. The reason

is that the CDI method properly accounts for conditional information whereas the classical

method uses the ratio of a forward-looking estimate to a backward-looking estimate, thus

failing to take account of conditional information.

4 Data

We start with daily S&P 500 and FTSE 100 data from OptionMetrics. For the S&P 500

index options, price midpoints are available from September, 1996 through December, 2012,

for a total of 196 months. For the FTSE data, closing prices are available from January

2002 through July 2013. Prior to 2006, FTSE data was collected from the exchange directly.

After 2006, Optionmetrics began receiving tick data with more limited availability until

2007. As a consequence, several months are unavailable in 2006 and 2007 and we are left
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with 121 total months of data. We use options with one month to maturity, giving a non-

overlapping time-series of options prices. This non-overlapping data allow us to obtain

independent observations for beliefs about the coming month and an independent realization

of returns. Using monthly rather than higher frequency data does not cause a significant

loss of information for our analysis because we only have one option expiration per month.

We also use OptionMetrics implied volatilities for each strike price at each date in our set.

We remove data for which there is no available implied volatility as these violate static no

arbitrage conditions. We wind up using put prices for relatively low strike prices, call prices

for relatively high strike prices and weighted averages for intermediate strike prices. We use

a logistic function that is centered at the closing index value with a volatility parameter that

is half of the range of observable option prices to determine the relative weights of puts and

calls when both prices are observable. Using open interest to calculate the weighted average

gives almost exactly the same result, but the logistic function is slightly smoother.

We obtain S&P 500 closing prices for monthly trading dates and for option expiration

dates from CRSP, and closing FTSE 100 values from OptionMetrics Europe. To estimate

the SDF with the classic procedure, we also use prices from up to ten years prior to the

start of our OptionMetrics sample for our rolling window estimations of the physical density.

Finally, we calculate the risk-free rate from continuously compounded yields on secondary

market 3-month Treasury Bills. This data is from the Federal Reserve report H.15.

5 Results

In this section, we present the results of our estimation described in Section 2, using the

data described in Section 4. We compare CDI results with the results obtained by using the

classic nonparametric method over the same sample period. We argue that our estimation

procedure results in economically plausible SDFs, unlike the classic method, which does not

properly account for conditional information and suggests the existence of a pricing kernel

puzzle. Throughout this section, it is important to recall that the risk-neutral densities used

for estimation of the SDF with the classic method are the same densities used for the CDI
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method. This allows us to compare the methods consistently.

Table 1 presents sample averages of the mean, variance, skewness and kurtosis associated

with both the risk-neutral and physical densities estimated for each of the 196 months from

September, 1996 through December 2012 for the S&P 500 and the 121 available months from

January 2002 to July, 2013 for the FTSE 100. The physical densities described in Table 1 are

estimated with a kernel density method using the past 60 months of index returns. Looking

first at the means of both the risk-neutral and physical densities, we see that the average

means are about the same, but the physical density means are much more variable than the

risk-neutral density means.

Theory dictates that the expected value of the risk-neutral density should equal rt for all

t. The average of the annualized expected return associated with the estimated risk-neutral

S&P 500 densities is 2.76% with a sample standard deviation of 0.97%. This is remarkably

close to the value we obtain when we plug in the mean value for rt over our sample period,

r̄ = 2.64%. Of course, this is not exactly the correct comparison to make, as one would

want to compare ertτ with the expected value of each risk-neutral density in our sample.

We calculate the absolute value of this difference for each month in our sample. The mean

absolute monthly difference is 0.18% with a standard deviation of 0.17%. This suggests

that our estimation procedure does very well in terms of matching the risk-free rate. This is

rather remarkable given that our estimation does not constrain the mean of the distributions

in any way. It is interesting to note that even during the crisis, the risk-neutral densities

have means that are close to the risk-free rate. The risk-neutral annualized mean returns

for the S&P 500 index on September 18th and October 23rd of 2008 are estimated to be

−2.81% and 7.14%, respectively. The estimated risk-neutral annualized mean returns on

September 17th and October 22nd of 2008 for the FTSE 100 are −5.7% and 13%. It may

be that the risk-neutral means are generally close to the risk-free rate because most option

traders use some variant of the Black-Scholes model, which sets the risk-neutral mean equal

to the risk-free rate.

Considering next the annualized standard deviations of risk-neutral and physical den-
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sities, the risk-neutral densities have higher average standard deviations than the physical

densities for both indices. Their standard deviations are also much more variable than those

of the physical densities. This difference is presumably driven by the conditional nature of

the risk-neutral densities. When investors believe the market will be volatile in the future,

this belief is immediately reflected by the risk-neutral density. However, the kernel density

estimator used in the classic procedure smoothes out any extreme returns and has no way to

incorporate investors’ beliefs. For the S&P 500, the estimated risk-neutral annualized stan-

dard deviations for September 18th and October 23rd of 2008 are 61% and 77%, respectively.

The corresponding values for the physical density are 12.96% and 16.4%. The FTSE 100

risk-neutral densities on September 17th and October 22nd of 2008 have annualized standard

deviations of 38% and 56%, also much higher than the estimates under our rolling window

physical density estimates which have annualized standard deviations of 18% for both days.

While the physical densities certainly respond to the extreme returns during the financial

crisis, their response is much smaller than the response of the risk-neutral densities.

The monthly skewness and kurtosis values are quite different for risk-neutral densities

than they are for physical densities. The results on these higher moments combined with

those for the means and standard deviations suggest that using a smoothing method to

estimate the conditional physical densities is misguided. As discussed earlier, the implicit

assumption made in order to use rolling window estimates for the physical densities is that

the physical densities are stable over time. In our data, neither the physical nor the risk-

neutral densities appear stable over time. Furthermore, if the pricing kernel is stationary

then the physical and the risk-neutral densities should be related to each other. In fact, in

a Black-Scholes world, the variance, skewness and kurtosis of the risk-neutral density are

equal to those of the physical density. However, in our data the moments of the risk-neutral

densities are not very close to those of the physical densities. Even using models which

forecast variances (e.g. Rosenberg and Engle (2002)) will likely fail to miss variation in

skewness or kurtosis. This highlights a major advantage of the CDI method over existing

methods.
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5.1 Classic Method Results

We first present the results of estimating the average of a series of estimated SDFs using the

classic nonparametric method similar to those of Jackwerth (2000) and Ait-Sahalia and Lo

(2000). We should point out that while our classic method estimates are similar to those

of other papers, they are not exactly the same as any particular paper. We use monthly

data over a longer time span than most other papers, and other papers often have slightly

different ways to model the SDF. Nevertheless, our classic method results should be very

similar to those of other papers. For both the FTSE 100 and the S&P 500 data, we use the

same risk-neutral densities that are used in the CDI method. These risk-neutral densities

are estimated using the procedure described in Section 2.2, and an example of a risk-neutral

density estimate appears in Figure 2. We then estimate the corresponding physical densities

using a Gaussian kernel density estimator based upon a rolling window of past returns. We

use a bandwidth of h = n−
1

5 × σdata, where σdata denotes the standard deviation of all the

data used in the kernel estimation for all time periods. The results do not seem to vary

much with different choices of h. When using the kernel density estimator, there is a trade

off between the number of data points available and the temporal proximity of the data

points. A larger number of data points improves the mechanical estimation of the kernel

density estimator, but does not solve the real problem, which is the use of backward-looking

data to estimate conditional beliefs. By taking realized returns further back, we are using

older, possibly irrelevant data as far as investors’ time t decision making is concerned.

Figures 4 and 5 present estimation results using the classic nonparametric method. The

panels of Figures 4 and 5 use different window lengths when calculating the physical densities

of returns. In all panels, the same general pattern appears but significant variations arise

across different window lengths. The SDF is sharply decreasing over states with low returns

before displaying nonmonotonicity and sometimes gradual increasing as returns increase. In

both figures the four panels look similar over lower returns, while there is some variation

across the panels as returns increase. We are not able to estimate the mean SDF with

any precision for gross index returns outside of the range of 0.9 to 1.1. Even though index
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realizations of 0.9 (-10% change) are rare, they do exist and we would like to be able to

identify the form of the pricing kernel at such low return values. As we look toward larger

returns, in the S&P 500 panels we see a portion of the estimated SDF that is increasing in

returns between 0.95 and 1.0. We also see at least one bump that appears for short rolling

windows but not for long windows. The FTSE 100 estimates appear almost flat for some

window lengths, and again bumps appear and disappear as the window length changes. It

is surprising how much these classic estimates vary as we change the window length. An

estimator that changes our inference about nonmonotonicity as we alter the window length

for estimating physical densities does not seem very robust.

The figures include pointwise 95% bootstrapped confidence intervals. Since we use a

rolling window of historical data to estimate the physical densities, we are able to obtain

tighter confidence intervals than we will using the CDI method, which does not use a window

of previous returns. Accordingly, the intervals become tighter as we increase the length of the

rolling window for both the FTSE 100 and the S&P 500 estimates. The confidence intervals

are in fact tight enough so that in every panel in both Figures 4 and 5, we are able to obtain

statistically significant non-monotonicity. We define a non-monotonicity to be statistically

significant in the estimated SDF if at any point on the returns (horizontal) axis, the lower

confidence bound exceeds the upper bound of any confidence interval at a lower level of

returns. For example, in each panel of Figure 4, the lower confidence bound at 1.02 on the

returns axis exceeds the upper confidence bound at 0.98. Therefore the estimates exhibit

a statistically significant non-monotonicity. As one would expect, using a longer window of

returns allows us to identify non-monotonicity at higher confidence levels. In Panel A of

Figure 4, the non-monotonicity is just significant at the 95% level. However, as we increase

the length of the rolling windows used in our estimates, the confidence intervals become

tighter and the non-monotonicities are more pronounced and thus are significant at even

higher levels of confidence.
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5.2 CDI Results

The upward sloping portions of the SDF in Figures 4 and 5 cannot be easily reconciled with

standard economic theory of risk averse investors, and similar estimates in the literature

have perpetuated the pricing kernel puzzle. The remainder of the paper investigates whether

properly accounting for investors’ information sets can eliminate the non-monotonicities of

estimated SDFs as functions of the index returns.

In order to simultaneously select the optimal model and estimate θ, we evaluate Equation

(12) for different numbers of moment restrictions and spline bases and then compare the

Cramer-von Mises statistics for each of the 1081 combinations of b and m satisfying 5 ≤ b ≤

m ≤ 50. The smallest Cramer-von Mises statistic occurs when b = m = 9, for both the FTSE

and S&P data, with values of 0.00016 (p = 0.976) and 0.00047 (p = 0.836), respectively. This

means that the optimal model we choose will solve Equation (11) when using the first nine

moment restrictions of the U [0, 1] distribution to estimate the coefficients for a spline with

nine bases. The null hypothesis of each associated goodness of fit test is that the estimated

distribution comes from the hypothesized distribution of U [0, 1].

We also calculate the Cramer-von Mises statistic and corresponding p-value for our data

in the case of no transformation. These statistics indicate the form the results would take

if we did not transform the data by estimating a pricing kernel. More specifically, the case

of no transformation means that we take g(y) ≡ 1 in Equation (8). So the non-transformed

data we use to calculate the Cramer-von Mises statistic is given by the vector V with

Vi =

∫ Xi

−∞

dF
Q
i (y), i = 1, ...T.

For the S&P 500 the untransformed data produce a statistic of 0.00057 (p = 0.534),

while for the FTSE 100 the statistic is 0.0012 (p = 0.481). These numbers imply that our

estimation procedure succeeds in transforming the S&P 500 data to a U [0, 1] sample quite

well. We are not able to fit the FTSE data to the uniform distribution quite as well as we can

the S&P data. We can also see from the results that even prior to our estimation, the data

are not statistically different from U [0, 1] at accepted significance levels. These results should
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not be considered a formal test comparing the transformed model to the non-transformed

data. That being said, our transformation does appear to improve the fit and according to

the Cramer-von Mises criterion the fit is very good for the S&P data. For the FTSE data,

the fit is not quite as strong but is still good. Figure 6 displays histograms of our data

before and after the transformation. Panels A and B clearly show the Cramer-von Mises

results for the S&P 500 are confirmed. The transformed S&P 500 data appears very close

to a uniform distribution over the unit interval and it does appear more uniform than the

non-transformed data. Panels C and D, on the other hand, show that we are not able to fit

the uniform distribution of with the FTSE data nearly as well as we can with the S&P data.

Furthermore, the histograms in Panels C and D do not visually display the improvement

in fit suggested by the Cramer-von Mises statistics. This is simply due to the fact that the

histogram with fairly thick bars is not always a good indication of fit. Both the Cramer-von

Mises results and Table 2, which we discuss below, show a significant improvement in fit from

the non-transformed to the transformed FTSE data. The vertical axis in Figure 6 counts

the number of data points falling within each bin as opposed to the density, which is simply

a normalization of the count.

We focus on the functional form of the inverse of the function ĝ whose estimation is

described in Section 2. Below, we plot the estimated functional form of M̂(x) = 1
ĝ(x)

which

we will refer to as the SDF since e−rtτ is approximately equal to one for our entire sample.

Furthermore, multiplying M(x) by a constant will not change the qualitative aspects of the

SDF we are attempting to capture.

It is easily seen from Figure 7 that the SDF estimated with the CDI approach is a

downward sloping function of S&P 500 index realizations. Figure 8 shows the estimated

SDF for the FTSE data is downward sloping over the returns ranging from 0.88 to 1.03,

but is upward sloping at returns larger than 1.03. However, there are relatively few observed

returns larger than 1.05 in the FTSE data set. As a result, our nonparametric estimator

is bound to be imprecise at larger values of index returns. The SDF estimates based on

the FTSE data look similar to the N = 200 estimates in Panel A of Figure 3. This could
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suggest that the true SDF is actually downward sloping everywhere while our estimate shows

non-monotonicity in the right tail only as a result of insufficient data. In order to investigate

whether there are indeed non-monotonicities in the SDF, we need to determine whether the

non-monotonicity of the estimated SDF is statistically significant. We include bootstrap

confidence intervals based on 20,000 resamples in Figures 7 and 8. In virtually all forms

of non-parametric estimation, an extremely large set of data is required for one to achieve

tight confidence intervals. Since options data does not go back very far, we don’t have many

extreme observed returns within the time series of realized returns corresponding to the

options data. As a result, confidence intervals for our estimates are not very tight at the

extreme ends of the estimated SDFs. It can be seen in Figures 7 and 8 that the pointwise

95% confidence intervals for the SDF are not very tight in regions that correspond to far

out-of-the-money options. This is to be expected as we have only 196 months worth of S&P

data and 121 months for the FTSE data.

We note that the estimated SDF based on the S&P 500 data, which has 33% more ob-

servations than the FTSE data, is clearly downward sloping and the pointwise confidence

intervals, while wide at certain points, do not allow us to reject monotonicity. Furthermore,

the confidence intervals are rather tight between 0.95 and 1.05, a region where many pre-

vious studies have found the SDF to be increasing. Our estimated downward sloping M

is in agreement with mainstream financial and economic theory that risk averse investors’

marginal rates of substitution should be downward sloping as a function of states of the

world. While the FTSE 100 SDF appears upward sloping in the region of large positive

returns, the 95% confidence intervals show that this non-monotonicity is not statistically

significant. Thus, our evidence suggests that avoiding the mixture of forward-looking and

historical data is a solution to the pricing kernel puzzle.

Since the CDI method is related to the estimation method of Bliss and Panigirtzoglou

(2005), we report results of the Berkowitz test, which is the main test used in Bliss and

Panigirtzoglou (2005) to assess parametric estimates of the risk aversion function. The test

involves two separate likelihood ratio tests. The first, with a test statistic denoted LR3 is
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a joint test of the hypothesis that our observed cumulants,
∫ Xt

−∞
ĝ(y)dF

Q
t (y), t = 1, 2, ..., T ,

are i.i.d. and are uniformly distributed over the interval [0, 1]. The LR3 test statistic is

distributed χ2
3 asymptotically. The second likelihood ratio test, with test statistic LR1, tests

the null hypothesis that our observations are iid. The LR1 statistic follows a χ2
1 asymptotic

distribution. The two likelihood ratio tests are complementary in that if we reject the joint

test based upon LR3, but we do not reject the test of independence based upon LR1, then

it must be the case that we reject the null hypothesis of a uniform distribution. Rejecting

the hypothesis of a uniform distribution after the transformation would mean that we do

not have the correct SDF, whose inverse transforms our data to a uniform distribution. The

results of the Berkowitz test are given in Table 2. We report the results of the test for both

the transformed data as well as the non-transformed data,
∫ Xt

−∞
dF

Q
t (y), t = 1, 2, ..., T .

We can see in Panel A of Table 2, that for the untransformed S&P 500 data, we can

reject the joint hypothesis at the 90% confidence level, with a p-value of 0.0732. This result,

along with the fact that we cannot reject the test of independence, implies that the non-

transformed data cannot be rejected as independent but we can reject the hypothesis of a

uniform distribution. On the other hand, the transformed data has a p-value of 0.8777 for

the joint test, confirming the results of the Cramer-von Mises statistics and suggesting that

the transformation gives a valid SDF. Panel B of Table 2 shows that the transformation of

the FTSE data is not able to match the uniform distribution as well as that of the S&P data.

Again the LR1 statistics for both the non-transformed data and the transformed data are

small enough that the the corresponding p-values are 0.9348 and 0.8544 respectively. This

means that the data appear to be convincingly independent. However, the LR3 statistics

of 6.4839 and 2.4112 with corresponding p-values of 0.0903 and 0.4916 suggest that we

can reject the uniform distribution of the non-transformed FTSE 100 data but we cannot

reject the uniform distribution for the transformed data. However, the p-value of 0.4916

corresponding to the LR3 statistic in Panel B does not suggest that we have a very great fit

of the data to the uniform distribution over the unit interval.
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6 Conclusion

The pricing kernel puzzle is the finding that the stochastic discount factor implied by option

prices and historical returns data is not monotonically decreasing in market returns. We

argue that this finding is an artifact of econometric technique, driven particularly by com-

paring two estimates of densities that condition on different information sets. We propose

a new nonparametric pricing kernel estimator that properly reflects all the information that

option investors use when they set option prices. Our estimator outperforms the classical

method in simulations. In S&P 500 and FTSE index option data, our estimator suggests

that the pricing kernel is monotonically decreasing in market returns.

It is important to confirm that the stochastic discount factor is monontonically decreasing

in market returns because a discount factor that increases in returns over some range implies

that the representative agent prefers lower returns (or higher risk) over that range. It is

unnatural to think of the representative agent exhibiting risk-loving behavior over any range

of market returns. Explaining the pricing kernel puzzle therefore lends credence to standard

risk and return theory.
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Appendix

Proof of Proposition 2: We first prove existence. We can apply the Radon-Nikodym

Theorem on the probability space (R,B(R)), where B(R) is the Borel σ-field generated on

R. Then by the Radon-Nikodym Theorem, there exists (a.s Q) unique random variable dP

dQ

such that

P((−∞, x]) = P(x) =

∫ Xt

−∞

dP

dQ
(y)dQ(y) ∀x ∈ R. (13)

Now if we define Gt(Xt) by

Gt(Xt) :=

∫ Xt

−∞

g(y)dQ(y), (14)

we know from Proposition 1, that if we take g(y) = dP

dQ
(y), then we have G(X) ∼ U [0, 1].

This establishes existence.

Next we establish uniqueness. Since we can only show almost sure (Q) uniqueness, we

reduce the space in question by removing all Q−null sets. Call this reduced space over the

real line R′. Since g is non-negative, the function G uniquely determines where g must be

zero over B(R′). So any functions satisfying the criteria of the proposition must take the

value zero over the exact same subsets of B(R′). Now it only remains to show that over the

sets where g 6= 0, the functional form is unique. Let N denote the set in B(R′) where g > 0.

Over this set, the function G is invertible because g > 0.

Suppose there is another function g′ satisfying Equation (14) over N . Define G ′

t as

G ′

t(Xt) ≡

∫ Xt

−∞

g′(y)dQ(y),

where, by our assumption on g′, we know G ′(X) ∼ U [0, 1]. Since G and G ′ are invertible over

N , we know that on the restricted domain, for a fixed x,

P(G ′(X) ≤ x) = P(X ≤ G ′−1(x))

and

P(G(X) ≤ x) = P(X ≤ G−1(x)).
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Since P and Q are equivalent by assumption, and N does not contain any Q-null sets, it

follows that N does not contain any P-null sets. This implies that P(X ≤ ·) is a strictly

increasing function and hence

G ′−1(x) = G−1(x)

for a fixed x. It follows that for deterministic sets E (e.g. E = (−∞, x] )

∫

E

g′(y)dQ(y) =

∫

E

g(y)dQ(y) ∀E ⊂ B(N ). (15)

Now we can apply the Radon-Nikodym Theorem on (N ,B(N ), Q). From Equation (15), the

Radon-Nikodym Theorem implies g′ = g a.s. Q on N . Since the values of g and g′ must be

zero on non-null subsets of N c, we have that g′ = g a.s. Q and hence g is unique (a.s. Q). �
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Figure 1: Black-Scholes-implied densities
Panel A plots the log-normal risk-neutral (dashed) and physical (solid) densities that arise
under the Black-Scholes model. We choose location parameters to match those of our samples
for monthly returns. The physical location parameter is thus set to µP = 0.0040 and the
risk-neutral location parameter is set equal to µQ = 0.00011. Under the Black-Scholes model,
both distributions have the same scale parameter, σ, so we set these both equal to the scale
parameter for our sample of (monthly physical) returns, σP = σQ = 0.0526. Panel B plots
the SDF corresponding to the densities in Panel A. In Panel C we slightly increase σQ to
σQ = 0.055, and in Panel D we plot the corresponding SDF.
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Figure 2: Example risk-neutral density
This risk-neutral density was estimated using option prices from April 20, 2006 with best
bids exceeding $3/8. For April 20, 2006, there are 43 valid option prices which we use,
corresponding to 37 unique strike prices. Each month we use option prices to estimate a
risk-neutral density like this one. We estimate the tails of the distribution by matching a
generalized Pareto Distribution to the slope of the density very close to where we can no
longer estimate it. The method for estimating the risk-neutral densities is described in detail
in Section 2.2.
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Figure 3: Estimated and true SDFs from simulations
The side by side plots compare the performance of the CDI method and classical method of
non-parametric estimates of the SDF. Our simulated data is generated using the true SDF
depicted by the bold line in each panel. The estimates of each method are depicted with the
true SDF.
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Figure 4: Estimated SDFs using classic procedure: S&P 500
Version of the classic nonparametric estimates of the stochastic discount factor as the average
of monthly SDF estimates with pointwise bootstrap 95% confidence intervals. Each monthly
SDF is the ratio of a risk-neutral density to a physical density estimate of returns on the
S&P 500 index. Each panel represents the resulting estimate when a different widow is used
to estimate the physical density using a Guassian kernel estimator.
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Figure 5: Estimated SDFs using classic procedure: FTSE 100
Version of the classic nonparametric estimates of the stochastic discount factor as the average
of monthly SDF estimates with pointwise bootstrap 95% confidence intervals. Each monthly
SDF is the ratio of a risk-neutral density to a physical density estimate of returns on the
FTSE 100 index. Each panel represents the resulting estimate when a different widow is
used to estimate the physical density using a Guassian kernel estimator.
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Figure 6: Histograms of cumulants with and without a pricing kernel
The histograms plotted in Panels A and C are estimates of the density of the cumulants
that result from integrating risk-neutral densities up to their corresponding realized values
of the S&P 500 and FTSE 100 data respectively, or

∫ Xt

−∞
dF

Q
t (y), t = 1, 2, ..., T . If the pricing

kernel is constant (or there is no compensation for risk) then we would expect this histogram
to be close to a uniform [0,1] density. The histograms in Panels B and D are estimates of the
density of corresponding cumulants resulting from our CDI estimation method. Specifically,
it is a histogram of

∫ Xt

−∞
ĝ(y)dF

Q
t (y), t = 1, 2, ..., T , where ĝ(y) is the CDI estimate of

the inverse of the pricing kernel. The fact that the histogram in Panel B appears to be
approximately uniformly [0,1] distributed shows that the CDI pricing kernel fits the S&P
500 data very well. The histogram in Panel D shows that the CDI pricing kernel fits the
FTSE 100 data only moderately well.
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Figure 7: Estimated stochastic discount factor using CDI method: S&P 500
The result of our CDI estimation of the pricing kernel for the S&P 500 is plotted above. It
is clearly monontonically decreasing on the interval over which we can estimate it with some
precision. The CDI method estimates the pricing kernel by matching the moments of the
distribution of the cumulants,

∫ Xt

−∞

ĝ(y)dF
Q
t (y), t = 1, 2, ..., T,

to the moments of the uniform distribution by nonparametrically estimating the function
g(·). The SDF in this formulation is actually the inverse of g(·), so that is what we plot
above. 95% confidence intervals, which are plotted with dashed lines, are based on 20,000
bootstrap iterations of the CDI method, sampling our set of dates with replacement.
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Figure 8: Estimated stochastic discount factor using CDI method: FTSE 100
The result of our CDI estimation of the pricing kernel for the FTSE 100 is plotted above.
The estimate exhibits some non-monotonicity at the end of the interval over which we can
estimate it with some precision. The non-monotonicity is not statistically significant accord-
ing to the 95% bootstrapped confidence intervals. The CDI method estimates the pricing
kernel by matching the moments of the distribution of the cumulants,

∫ Xt

−∞

ĝ(y)dF
Q
t (y), t = 1, 2, ..., T,

to the moments of the uniform distribution by nonparametrically estimating the function
g(·). The SDF in this formulation is actually the inverse of g(·), so that is what we plot
above. 95% confidence intervals, which are plotted with dashed lines, are based on 20,000
bootstrap iterations of the CDI method, sampling our set of dates with replacement.
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Table 1: Summary statistics for risk-neutral densities
For each of the months in our sample (196 months: from September 1996 through December
2012 for S&P 500 data. 121 months: from January 2002 to December 2012 for FTSE 100
data), we estimate both a risk-neutral density based on option prices and a physical density
based on historical data. The physical densities are estimated with a Gaussian kernel density
estimator using 60 months of past returns, and the risk-neutral densities are estimated as
described in Section 2.2. This table reports summary statistics on the moments of these
densities. The table reports both sample averages and sample standard deviations of the
first four centralized moments in terms of returns: mean, standard deviation, skewness and
kurtosis. The average means and standard deviations are annualized to ease interpretation.

Panel A: S&P 500

Risk-Neutral Densities from Options Prices
Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 2.76% 22.98% -1.1814 6.2283
Sample standard deviation 0.97% 24.00% 0.4844 2.1343

Physical Densities from 60 months of Historical Data
Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 6.48% 18.33% -0.4661 4.1178
Sample standard deviation 2.29% 11.49% 0.3537 1.4569

Panel B: FTSE 100

Risk-Neutral Densities from Options Prices
Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 3.57% 21.43 % -1.0365 7.9168
Sample standard deviation 4.01% 9.00% 0.6857 4.1581

Physical Densities from 60 months of Historical Data
Annualized Annualized Monthly Monthly
Mean Ret Standard Dev Skewness Kurtosis

Sample average 3.45% 16.71 % -0.5273 3.4905
Sample standard deviation 3.08% 1.10% 0.1047 0.2389
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Table 2: Berkowitz statistics and p-values
The first line reports likelihood ratio test statistics and corresponding p-values for Berkowitz
tests of the transformed data using the optimal model, b = m = 9. The second line reports
likelihood ratio test statistics and corresponding p-values for Berkowitz tests of the non-
transformed data, or the data without a pricing kernel. The LR3 statistic tests the joint
hypothesis that data is iid and U [0, 1]. The LR1 statistic tests the hypothesis that the data
are independent. Rejection based upon the LR3 statistic can come from the data not being
independent or the data not being uniformly distributed. If we reject base upon the LR3

statistic but fail to reject based upon the LR1 statistic, this implies that the data does a
poor job fitting the U [0, 1] distribution.

Panel A: S&P 500

Model LR3 p-value LR1 p-value

Optimal model (b = m = 9) 0.6808 0.8777 0.0054 0.9412
No pricing kernel 6.9593 0.0732 0.0447 0.8326

Panel B: FTSE 100

Model LR3 p-value LR1 p-value

Optimal model (b = m = 9) 2.4112 0.4916 0.0337 0.8544
No pricing kernel 6.4839 0.0903 0.0067 0.9348
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